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Abstract-A detailed analysis of kinking of an interface crack between two dissimilar anisotropic
elastic solids is presented in this paper. The branched crack is considered as a distributed dislocation.

A set of the singular integral equations for the distribution function of the dislocation density
is developed.

Explicit formulas of the stress intensity factors and the energy release rates for the branched
crack are given for orthotropic bimaterials and misoriented orthotropic bicrystals.

The role of the stress parallel to the interface, (10 is taken into account in these formulas.
The interface crack can advance either by continued extension along the interface or by kinking

out of the interface into one of the adjoining materials. This competition depends on the ratio of
the energy release rates for interface cracking and for kinking out of the interface and the ratio of
interface toughness to substrate toughness.

Throughout the paper, the influences of the inplane stress (10 on the stress intensity factors and
the energy release rates for the branched crack, which can significantly alter the conditions for
interface cracking, are emphasized.

1. INTRODUCTION

The interface fracture mechanics for two dissimilar anisotropic materials has attracted
many scientists' attention.

Gotoh (1967) analysed the interface crack problem for the anisotropic plate based on
the Dugdale mode. Clements (1971) presented the general formulas for the interface crack
between two dissimilar anisotropic solids using the Stroh's (1958) theory of anisotropic
elastic media. He introduced the six piecewise analytical potentials and established the well
known Hilbert problem.

Several basic problems have been solved by Wills (1971), Ting (1986), Wang and Choi
(1983), Bassani and Qu (1989), Qu and Bassani (1989), Wu (1990), Gao et al. (1992)
among others. A significant progress has been made by Suo (1990). He established the
general singular fields for the interface crack between two dissimilar anisotropic media
using the complex function vector.

The kinking of a crack out of an interface between two dissimilar isotropic materials
is solved by He and Hutchinson (1989), He et al. (1991) for the case of semi-infinite cracks.

Using the formulation in Clements (1971) and Wang and Choi (1983), and the Green's
function, a solution has been presented by Miller and Stock (1989) for the problem of a
crack branching off the interface between two dissimilar anisotropic materials. Numerical
results for the stress intensity factor of the branch crack are obtained for some special cases
in their paper.

Wang et al. (1992) developed the concepts of mode mixity and toughness surface for an
interface crack in anisotropic solids. Explicit formulae for stress intensity factors and energy
release rates for branch crack are presented in their paper. Many typical numerical results
are obtained.

This paper is a continuous development of the work by Wang et al. (1992). The role
of the stress (To in the substrate parallel to the interface in kinking of a crack out of an
interface between two dissimilar anisotropic materials is investigated in detail.

It has been shown that the influences of the stress (To on the energy release rate of the
branch crack are significant when the length a of the branch crack is not very small. A
thorough analysis for the energy release rates Gkink for the branch crack is presented here.

Explicit formulae for the stress intensity factors and the energy release rates are
developed with emphasis on the contribution of the stress (To-
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2. BASIC FORMULAE

The formulation in Suo (1990), Wang et at. (1992) will be used throughout the paper.
The displacements Ui, stresses a2i and resultant forces}; on an arc AB can be expressed

3

Ui = 2Re L AijC{J;(Zj),
i= I

3

}; = -2Re L Lij<pj(Zj)I~,
j= 1

3

a2i = 2Re L Lij<pj(Zj)'
j= I

Introduce following vector functions:

<p(Z) = [<PI(ZI),CP2(Z2),CP3(Z3)Y

C1>(z) = [CPI (z), CP2(Z), CP3(Z)Y.

(1)

The interaction problem of dislocation versus interface crack in anisotropic media has
been solved by Suo (1990).

Consider a dislocation line in the direction perpendicular to x, Y plane with Burger's
vector b at the point (xo, Yo) in material 2, as shown in Fig. 1.

We have:

(2)

where

C(2) = L2Ijj-l(B2-BI)L2,

C1>o(z) = [CPo I (z), CP02(Z), CP03(Z)Y

CPOj(z) = djLn(z-sj),Sj = xo+,ujYo,

d = [db d2, d3Y = L 2
1(B2 +B2)-lb/2n,

h(z) = hl(z) W+h 2(z) W+hs(z) W 3 •

Matrices A, B, L, H and vectors W, W, W3 are introduced by Suo (1990) and Miller
(1989). The subscript 2 indicates quantities for material 2.

For the case of a semi-infinite crack, Wang et al. (1992) show that:

hi(z) = -Rib/2n, i = 1,2,3,

Ri = [PiD(z,s,y,)C+QTD(z,s,y/)C}(l-(Ji)/2, i = 1,2,3,

y

(3)

(4)

2

x

Fig. I. Interaction between a dislocation line with a traction free crack.
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where

Yl = ie, Y2 = 1+ie, Y3 = 1,

{

pi = WT(B2+ 8 2)L2/.10 ' Qf = e- 2"'WT(B2+82)[2/.10,

T -T T -T
P2=Q], Q2=Pt>

pI = WI(B2+B2)L2/.1 3, QI = WI(B2 +B2}L2/.1 3,

.10 = WTHW, .1 3 :;:: wIHW 3,

Introducing the following matrices:

we obtained:

V(O) ( )-~
jk Z,S - ( )' j no sum,

Z-Sj

For the branch crack as shown in Fig. 2, we have:

y

==-----7b-::--- lt

2

Fig. 2. A branched interface crack.
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(7)
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The traction components Pi on the branch segment, take the forms:

P, = (J'jni = (In sin W+(J,2 cos W
3

= 2Re L LijWjepj(Zj)'
j" I

Noting the branch crack is in the material 2, it follows:

(13)

here

(14)

The function vector cp(O) (z) is the potential vector prior to kinking. The function vector
ep(d)(Z) is the potential vector due to the distributed dislocation on the line segment of the
branch crack. We have:

(15)

where s= lsi, a is the length of the branch crack.
Substituting eqn (15) into eqn (13), results in:

(16)

where plO) are the traction components prior to kinking:

(17)

The eqn (16) is the governing equation for the unknown dislocation density b(s). This
is a set of coupled singular integral equations.

The eqn (16) can be represented as :

where t = s= lsi, s = te~j())

0< t < a, (18)

(19)

(20)

3. STRESS INTENSITY FACTORS AND ENERGY RELEASE RATE FOR BRANCH CRACK

We consider first the traction components p}O}. The stress fields near the interface crack
prior to kinking are
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where (10 indicates the stress component in material 2 parallel to the interface (10 = (1 II' As
pointed out by Rice and Shih (1965), a jump in the parallel stresses across the interface is
required in general. We are only interested in the stress component in material 2 parallel
to the interface (111 = (10'

The function vector cp(O)(z) corresponding to the singularity stress fields is taken in the
form:

It follows (including the contribution of (10) :

piO) = 2Re {.f (LijWjhT~h}0)(Zj)}+bli(10 sin W,
J= I

where

T* = T'[W,W,W 3],

h\O) (z) = e'"[(zis/2~ cosh ne,

h~O)(z) = e-n'Kz-is/2~ cosh ne,

h~O)(z) = K3/2~.

(22)

(23)

(24)

We discuss only the inplane problem.
Following the work of He et al. (1991) and Wang et al. (1992). The stress intensity

factors at the kink tip can be represented as:

(25)

where c, d, Ii are the complex coefficients. They are the function of wand elastic constants
of materials 1 and 2.

Equation (25) can be rewritten as:

here

Kfink = CII Re (Kai')+cl2 1m (Ka i
') + Ii 1(10~'

Kf;nk = C21 Re (Kai')+cn 1m (Kai') + 1i2(10~

ell = Re (e+d), el2 = -1m (e+d),

C21 = 1m (c-d), Cn = Re (c-d).

The coefficients cij have been given by Wang et al. (1992).
The energy release rate of interface crack is:

(26)

(27)
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Introduce the equivalent elastic modulus E* for the interface:

1 - T - 2E* = W (H+H)Wj4cosh nl>.

Equation (27) can be rewritten as:

The energy release rate Gkmk for the branch crack takes the form :

(28)

(29)

where

k = [K
kink

K
kink

] T* II, I , (30)

(31)

[
COS W

R =* sin w
-sin w].

cos w
(32)

Substitute eqns (30), (31) into eqn (29), we arrive att

Gkink = H(B II cos2w+B22 sin2w)(K~:nk)2+2(BlI-B22)COS w"sin w KfinkK~:nk

+(B II sin2w+Bn cos2w)(K~ink)2}

= !{B II (sin w K~ink + cos w K~;nk)2 + B 22 (cos WK}ink - sin w K~;nk)2}. (33)

Using the eqn (26), it results:

where B'j are the elements of matrix B2:

l
e ll = COSW"ClI-sinw"C2b

el2 = cos W" CI2 -sin W" C22'

e21 = S~nW"C21 +COSW"C21,

en = SlnW"C22+COSW"C22,

{
or=COSW" 0l-sinw" 02,

o 8 = sin W" 0 I + cos W" 0 2>

The stress intensity factor K has the form K = IKI eiofJ L -ie. Therefore we have:

KT = IKI cos "'*' K~ = IKI sin "'*'

t Assume Re B 12 = 0 for the sake of simplicity.

(35)

(36)

(37)

(38)
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Substitute eqn (38) into eqn (34), we obtain:

Gkink

T =j(O)+t/j(I)+t/2j(2),
,

where

635

(39)

The dimensionless parameter t/ is introduced by He et al. (1991) in the analysis of the
kinking of a crack out of an interface for isotropic materials which characterizes the
comprehensive effects of the stress (J 0 and the length of branch crack.

The functionsj(i) depend on the load phase t/!*, kink angle and the coefficients Cij, Ii i,

but are independent of the magnitude of K and the parameter t/.

4. NUMERICAL RESULTS

The singular integral equations in eqn (18) can be represented in the dimensionless
form. The numerical method proposed by Erdogan and his colleagues (1973) is used for
solving eqn (18).

The singularity at the root of the branch is considered to be less than 1/2. This
assumption seems to be consistent with the results of Bogy (1971) for the similar geometries
of anisotropic media.

4.1. Aligned orthotropic bimaterials
Consider two dissimilar orthotropic materials bonded with the principal axes aligned.

The interface is on the X axis and the crack is on the negative X axis. The components of
Hare:

H II = [2nA.1/4~]I+[2nA.1/4~h,

H 22 = [2nA.-1/4~]1 +[2nA.-1/4~h,

H 12 = i{[~+s12L -[~+S12h}'

(l( = (1:-1)/(1:+1), f3 = iHdJHIIH22,

1: = [slls12h .
[SIISdl

(44)

Here [ ] I designate quantities for material 1, and [ h for material 2, sij are the elastic
compliance tensors. The dimensionless parameters A., n are given by:

(45)
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The matrix B is:

(46)

Eigenvector W takes the form :

1 [ . (ii;; JT
W ="2 -lVB:;,l . (47)

The traction on the interface can be described as :

(48)

(49)

When e = 0, we have:

(50)

It is worth noting the complex stress intensity factor K defined here in general is
different from the conventional definition. For the aligned orthotropic bimaterials, when
and only when the parameter e equals zero and parameter HI tlH22 is equal to unity, the
stress intensity factors K] and K 2, defined here is coincident with the conventional stress
intensity factors.

For orthotropic materials, the two parameters Aand Pmeasure the anisotropy. Ifboth
parameters Aand P approach unity, the material becomes isotropic.

In order to check our program, two sets of parameters are chosen: AI = A2 = 1,
PI = 1.001, P2 = 1.003, IX = f3 = 0, "'. = 45°, 11 = 0 and 11 = 0.25.

It means that the materials have very weak anisotropy and eventually they can be
considered as isotropic materials.

2

...
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0 40 80 120

K.inking angle, CD

Fig. 3. Curve of Ii I and li2 as a function of w.
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Fig. 4. Coefficientspil as a function of the kinking angle w.

Our calculations result for Gkink/G;, Ii" Ii z as the functions of kink angle OJ agree
within 1% with the results given by He et al. (1991).

In the following computation, the elastic constants for the two materials are taken to
be A. I = 1.0, PI = -0.19, A.z = 0.12, pz = 6.4 which are corresponding to those of a typical
eu single crystal and the boron/epoxy composite.

The values of the coefficients Cjj are given by Wang et al. (1992) for six different
combinations of 0( and p.

The values for the Ii 1 and Ii z as the functions of the kink angle OJ are plotted in Fig.
3 for the case 0( = P= O. The coefficients/(i) vs OJ are shown in Fig. 4 for the case 0( = p= 0,
t/J = 45°.

For the case 0( = p= 0, t/J = 45°, the influence of (To on the ratio Gkink/Gj is shown in
Fig. 5. Here Gs = Gkink.

The ratio Gkink/Gj is increased when '1 increases. When '1 = 0.5, the ratio Gkink/G; is
increased by about 80%.

Figure 5 shows that there is a favorite (Te, at which Gkink reaches maximum G~~.

The ratio G~~/G j as the function q> is plotted in Fig. 6 and Fig. 7 for the case 0( = P= O.
Figure 8 and Fig. 9 indicate the effects of parameter 0( on the ratio G~~:/G;. It can be

clearly seen that the ratio G~~:/Gjwill increase when 0( increases.

4.2. Bicrystals with tilt grain boundary
Figure 10 shows a tilt grain boundary of an orthotropic crystal, i.e. the two grains are

misoriented but otherwise identical. The principal material axis x 1 is tilted from x by angles

8

6

ci-
..... 4 0.5
r; 0••

0.3
0.2
0.1

2 1\-0
II .. o. IS .. O. 11' .. 45·

0
0 40 80 120

Kinking angle, Q)

Fig. 5. Energy release rate ratio as a function of the kinking angle w.
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Fig. 6. Ratio of the maximum energy release rate of kinked crack to interface energy release rate as
a function of the loading phase.
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Fig. 7. Energy release rate vs the loading phase.
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Fig. 8. Ratio of the maximum energy release rate of kinked crack to interface energy release rate as
a function of the loading phase.
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Fig. 9. Ratio of the maximum energy release rate of kinked crack to interface energy release rate as
a function of the loading phase.

K~iD",K~"

Fig. 10. A schematic of a small-scale kink problem. The principal direction x 1 is tilted from x-axis
by 9\ and 92, respectively.
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Fig. II. Energy release rate ratio as a function of the kinking angle w.
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Fig. 12. Ratio of the maximum energy release rate of kinked crack to interface energy release rate
as a function of the loading phase.

01 and O2 , respectively. The (x, y) plane is a plane of mirror symmetry, and the tilt axis and
the crack front are normal to (x, y) plane. The matrix H for such a grain boundary crack
is real (see Wang et al., 1992).

Consider zinc single crystal (hexagonal system) at room temperature. The material
properties for zinc in crystal axes are:

SII = 8.0, S22 = 28.2, S66 = 25.0, SI2 = -6.1, S13 = -0.5

with the unit 10- 6 m2 MN- I.

The corresponding parameters for plane strain are:

A. = S'I dS22 = 0.338

p = (2s']2 +S'66)/2~ = 0.439.

The calculation was carried out for the case 01 = 30°, O2 = 75°.
The calculated values of parameters (X and f3 are (X = 0.0583, f3 = 0.0.
The values of the coefficients cij have been given by Wang et al. (1992).
Figures 11 and 12 show the influences of the stress 0'0 on the ratio G~~~/Gj'

5. CONCLUSION AND DISCUSSION

A thorough analysis of kinking of a crack out of an interface between two dissimilar
anisotropic elastic solids is presented in this paper. The coupled singular integral equations
for distributed dislocation along the branch crack is obtained.

Explicit formulas of the stress intensity factors and the energy release rate for the
branch crack are developed for aligned orthotropic bimaterials and misoriented orthotropic
bicrystals.

The role of the stress parallel to the interface, 0'0, is emphasized. Inplane stress com
ponents can have a significant influence on the behavior of interface cracks. In particular,
the tensile stress 0'0 will enhance the energy release rate Gl<inl< for the branch crack, and
causes the interface crack to depart from the interface. On the other hand, compressive
stress 0'0 will reduce the Gl<inl< and deactivate flaws around the interface.

The interface crack can advance along the interface or kinking out ofthe interface into
the substrate. Broadly speaking, the tough substrate will result in the crack to extend along
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the interface. Kinking is favored if:

641

(51)

Here the r s and C are the fracture toughness of the substrate and interface respectively.
For anisotropic substrate material, the toughness r. depends also on the kink angle

w. Therefore the condition (51) can be rewritten as:

kink /rs(w) < r;(l{J)G (w, l{J) G;. (52)

This paper provides the computation method for the ratio Gkink/G;. The fracture
resistance ratio rs(w)/r;(l{J) should be quantified by the interfacial fracture testing and the
fracture testing for the anisotropic substrate material.
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